Lagrangian mean curvature flow of Whitney spheres

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Translating Solutions to Lagrangian Mean Curvature Flow

We prove some non-existence theorems for translating solutions to Lagrangian mean curvature flow. More precisely, we show that translating solutions with an L bound on the mean curvature are planes and that almost-calibrated translating solutions which are static are also planes. Recent work of D. Joyce, Y.-I. Lee, and M.-P. Tsui, shows that these conditions are optimal.

متن کامل

Mean Curvature Flow and Lagrangian Embeddings

In this note we provide examples of compact embedded lagrangians in Cn for any n ≥ 2 that under mean curvature flow develop singularities in finite time. When n is odd the lagrangians can be taken to be orientable. By gluing these lagrangians onto a special lagrangian embedding L we provide examples of compact embedded lagrangians in a Calabi-Yau manifold that under mean curvature flow develop ...

متن کامل

Mean Curvature Flow of Pinched Submanifolds to Spheres

The evolution of hypersurfaces by their mean curvature has been studied by many authors since the appearance of Gerhard Huisken’s seminal paper [Hu1]. More recently, mean curvature flow of higher codimension submanifolds has also received attention. In this paper we prove a result analogous to that of [Hu1] for submanifolds of any codimension. Let F0 : Σn → Rn+k be a smooth immersion of a compa...

متن کامل

Singularity of Mean Curvature Flow of Lagrangian Submanifolds

In this article we study the tangent cones at first time singularity of a Lagrangian mean curvature flow. If the initial compact submanifold Σ0 is Lagrangian and almost calibrated by ReΩ in a Calabi-Yau n-fold (M,Ω), and T > 0 is the first blow-up time of the mean curvature flow, then the tangent cone of the mean curvature flow at a singular point (X0, T ) is a stationary Lagrangian integer mul...

متن کامل

Singularities of Lagrangian Mean Curvature Flow: Zero-maslov Class Case

We study singularities of Lagrangian mean curvature flow in C when the initial condition is a zero-Maslov class Lagrangian. We start by showing that, in this setting, singularities are unavoidable. More precisely, we construct Lagrangians with arbitrarily small Lagrangian angle and Lagrangians which are Hamiltonian isotopic to a plane that, nevertheless, develop finite time singularities under ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometry & Topology

سال: 2019

ISSN: 1364-0380,1465-3060

DOI: 10.2140/gt.2019.23.1057